Part Number Hot Search : 
D74UH04E NTE1749 N6141C FCT16 HZ36NBSP CY62148 RU6070L EXQ60
Product Description
Full Text Search
 

To Download TSH344IDT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TSH344
340MHz Single-Supply Triple Video Buffer

Bandwidth: 340MHz 5V single-supply operation Low output rail guaranteed at 60mV max. Internal gain of 6dB for a matching between 3 channels Very low harmonic distortion Slew rate: 740V/s Specified for 150 and 100 loads Tested on 5V power supply Data min. and max. are tested during production
Pin Connections (top view)
Pin1 identification
Top View
IN1 1
6dB
8 OUT1
Description
The TSH344 is a triple single-supply video buffer featuring an internal gain of 6dB and a large bandwidth of 340MHz. The main advantage of this buffer is its very low output rail very close to GND when supplied in single supply 0/5V. This output rail is guaranteed by test at 60mV from GND on 150. Chapter 4 of this datasheet gives technical support when using the TSH344 as RGB driver for video DAC output on a video line (see TSH343 for Y-Pb-Pr signals). The TSH344 is available in the compact SO8 plastic package for optimum space-saving.
IN2 2
6dB
7 OUT2
IN3 3 +Vcc 4
6dB
6 OUT3 5 GND
SO8
Applications

High-end video systems High Definition TV (HDTV) Broadcast and graphic video Multimedia products
Order Codes
Part Number Temperature Range Package Packing Marking
TSH344ID -40C to +85C TSH344IDT SO-8
Tube Tape & Reel
TSH344I TSH344I
January 2006
Rev. 2
1/14
www.st.com
14
Absolute Maximum Ratings
TSH344
1
Table 1.
Symbol
Absolute Maximum Ratings
Key parameters and their absolute maximum ratings
Parameter Value Unit
VCC Vin Toper Tstd Tj Rthjc Rthja Pmax. ESD
Supply voltage
(1)
6 0 to +2 -40 to +85 -65 to +150 150 28 157 800 2 1.5 200
V V C C C C/W C/W mW kV kV V
Input Voltage Range (2) Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature SO8 Thermal Resistance Junction to Case SO8 Thermal Resistance Junction to Ambient Area Maximum Power Dissipation (@Ta=25C) for Tj=150C CDM: Charged Device Model HBM: Human Body Model MM: Machine Model
1. All voltage values, except differential voltage, are with respect to network terminal. 2. The magnitude of input and output voltage must never exceed VCC +0.3V.
Table 2.
Symbol
Operating conditions
Parameter Value Unit
VCC
Power Supply Voltage (1)
3 to 5.5
V
1. Tested in full production at 0V/5V single power supply
2/14
Rev. 2
TSH344
Electrical Characteristics
2
Table 3.
Symbol
Electrical Characteristics
VCC = +5V Single Supply, Tamb = 25C (unless otherwise specified)
Parameter Test Condition Min. Typ. Max. Unit
DC Performance
VOS
Output Offset Voltage(1)
no Load, Tamb -40C < Tamb < +85C
-35
-8 -8.6 5.5 6 4 1 -90 10.1 10.3
+35 mV 16
Input Bias Current Iib Rin Cin PSR Input Resistance Input Capacitance Power Supply Rejection Ratio 20 log (Vcc/Vout) Supply Current per Buffer ICC G MG1 MG0.3 DC Voltage Gain Gain Matching between 3 channels Gain Matching between 3 channels
Tamb, input to GND -40C < Tamb < +85C Tamb Tamb input to GND, F=1MHz, Vcc=200mV no Load, input to GND -40C < Tamb < +85C RL = 150, Vin=1V Input = 1V Input = 0.3V 1.92
A
G pF dB 13 mA
2 0.5 0.5
2.05 2 2
V/V % %
Dynamic Performance and Output Characteristics
-3dB Bandwidth Bw Gain Flatness @ 0.1dB Full Power Bandwidth Delay between each channel Slew Rate (2) High Level Output Voltage Low Level Output Voltage Output Current IOUT Output Short Circuit Current (Isource)
Small Signal Vout=20mVp Vicm=0.6V, RL = 150 Small Signal Vout=20mVp Vicm=0.6V, RL = 150 Vicm=0.6V, VOUT = 2Vp-p, RL = 150 0 to 30MHz Vicm=0.6V, VOUT = 2Vp-p, RL = 150 RL = 150 RL = 150 Vout=2Vp, Tamb -40C < Tamb < +85C
190
340 MHz 65
FPBW D SR VOH VOL
130
200 0.5
MHz ns V/s V 60 mV mA
500 3.7
740 3.9 40
45
93 83 100 mA
Rev. 2
3/14
Electrical Characteristics Table 3.
Symbol Noise and Distortion
TSH344
VCC = +5V Single Supply, Tamb = 25C (unless otherwise specified)
Parameter Test Condition Min. Typ. Max. Unit
F = 100kHz, Rin = 50 Total Input Voltage Noise eN Rin = 50 Bw=30MHz Bw=100MHz VOUT = 2Vp-p, RL = 150 F= 10MHz F= 30MHz VOUT = 2Vp-p, RL = 150 F= 10MHz F= 30MHz
8 55 100 -57 -42 -72 -51
nV/Hz
Vrms
2nd Harmonic Distortion HD2 3rd Harmonic Distortion HD3
dBc
dBc
1. Output Offset Voltage is determined from the following expression: VOUT =G.VIN+VOS 2. Non-tested value. Guaranteed value by design.
4/14
Rev. 2
TSH344 Figure 1.
10 8 6 4
Electrical Characteristics Frequency response Figure 2.
6,2 6,1 6,0 5,9
Gain flatness
Gain (dB)
Gain (dB)
2 0 -2 -4 -6 -8 -10 1M
5,8 5,7 5,6 5,5 5,4
Vcc=5V Load=150
10M 100M 1G
5,3 5,2 1M
Vcc=5V Load=150
10M 100M 1G
Frequency (Hz)
Frequency (Hz)
Figure 3.
0 -10 -20 -30
Cross-talk vs. frequency (amp1)
Figure 4.
0
Cross-talk vs. frequency (amp2)
Small Signal Vcc=5V Load=150
-20
Small Signal Vcc=5V Load=150
Gain (dB)
-40 -50 -60 -70 -80 -90 -100 1M
1/2
Gain (dB)
-40
-60
2/1
1/3
-80
2/3
-100 1M
10M
100M
10M
100M
Frequency (Hz)
Frequency (Hz)
Figure 5.
0
Cross-talk vs. frequency (amp3)
Figure 6.
Input noise vs. frequency
Vcc=5V DC input = 1.5V (Battery)
Input Noise (nV/VHz)
3/2
100M
-20
Small Signal Vcc=5V Load=150
100
Gain (dB)
-40
-60
3/1
-80
10
-100 1M
10M
10
100
1k
10k
100k
1M
10M
Frequency (Hz)
Frequency (Hz)
Rev. 2
5/14
Electrical Characteristics Figure 7.
-30 -35 -40 -45
TSH344 Figure 8.
-30 -35 -40 -45
Distortion on 150 load - 10MHz
Distortion on 100 load - 10MHz
HD2 & HD3 (dBc)
-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 HD3 HD2
HD2 & HD3 (dBc)
-50
Vcc=5V F=10MHz input DC component = 1.15V Load=150
-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 0,0
Vcc=5V F=10MHz input DC component = 1.15V Load=100
HD2
HD3
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
Output Amplitude (Vp-p)
Output Amplitude (Vp-p)
Figure 9.
-10 -15 -20 -25
Distortion on 150 load - 30MHz
Figure 10. Distortion on 100 load - 30MHz
-10 -15 -20 -25
HD2 & HD3 (dBc)
-35 -40 -45 -50 -55 -60 -65 -70 -75 -80 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 HD3 HD2
HD2 & HD3 (dBc)
-30
Vcc=5V F=30MHz input DC component = 1.15V Load=150
-30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 0,0
Vcc=5V F=30MHz input DC component = 1.15V Load=100
HD2
HD3
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
Output Amplitude (Vp-p)
Output Amplitude (Vp-p)
Figure 11. Output current
0 -10 -20 -30
Isource +5V VOH
without load
Figure 12. Slew rate
4,0 3,5 3,0 2,5 2,0 1,5 1,0 0,5
Isource (mA)
-40 -50 -60 -70 -80 -90 -100 -110 -120 0,0
0V
V
Output Response (V)
SR+
SR-
Vcc=5V Load=150
-2 -1 0 1 2 3 4 5 6 7 8
0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0
V (V)
Time (ns)
6/14
Rev. 2
TSH344 Figure 13. Reverse isolation vs. frequency
0 -10 -20
Electrical Characteristics Figure 14. Output swing vs. frequency
5
Vcc=5V Load=150
4
Vout max. (Vp-p)
-30
Gain (dB)
-40 -50 -60 -70 -80 -90 -100 1M
3
2
1
Vcc=5V Load=100 or Load=150
10M 100M
0 1M
10M
100M
Frequency (Hz)
Frequency (Hz)
Figure 15. Quiescent current vs. Supply
30
Figure 16. Output swing vs. supply
5
25
Vcc=5V no load
4
Total Icc (mA)
20
Vout peak-peak (Vp-p)
3
15
2
10
1
5
Vcc=5V F=30MHz Load=100 or 150
3,25 3,50 3,75 4,00 4,25 4,50 4,75 5,00
0 0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0
0 3,00
Vcc (V)
Vcc (V)
Figure 17. Bandwidth vs. temperature
500 450 400
Figure 18. Voltage gain vs. temperature
2,05 2,04 2,03 2,02
Bw (MHz)
Gain (dB)
Vcc=5V Load=150
-20 0 20 40 60 80
350 300 250 200
2,01 2,00 1,99 1,98 1,97
150 100 -40
1,96 1,95 -40
Vcc=5V Load=150
-20 0 20 40 60 80
Temperature (C)
Temperature (C)
Rev. 2
7/14
Electrical Characteristics Figure 19. Ibias vs. temperature
2
TSH344 Figure 20. Gain matching vs. temperature
1,0
Vcc=5V Load=150
3 0,8
Gain Matching between 3 channels Vcc=5V Load=150 Vin=0.3V and 1V
IBIAS (A)
GM (%)
4
0,6
5
0,4
6
0,2
7 -40
-20
0
20
40
60
80
0,0 -40
-20
0
20
40
60
80
Temperature (C)
Temperature (C)
Figure 21. Supply current vs. temperature
11
Figure 22. Output current vs. temperature
100
ICC (mA)
10
Isource (mA)
Vcc=5V no Load
90
80
9
70
8
60
Vcc=5V Load=150
-20 0 20 40 60 80
7 -40
-20
0
20
40
60
80
50 -40
Temperature (C)
Temperature (C)
Figure 23. Output higher rail vs. temperature
4,2
Figure 24. Output lower rail vs. temperature
50
45 4,1 4,0 40
VOH (V)
3,9 3,8
VOL (V)
35
30 3,7 25 3,6 3,5 -40
Vcc=5V Load=150
-20 0 20 40 60 80 20 -40
Vcc=5V Load=150
-20 0 20 40 60 80
Temperature (C)
Temperature (C)
8/14
Rev. 2
TSH344
Power Supply Considerations and improvement of the PSRR
3
Power Supply Considerations and improvement of the PSRR
Correct power supply bypassing is very important for optimizing performance in low and high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pin (pin 4) to improve high-frequency bypassing. A capacitor (C LF) greater than 100uF is necessary to improve the PSRR in low frequencies. For better quality bypassing, a capacitor of 470nF (C HF) is added using the same implementation conditions to improve the PSRR in the higher frequencies. Figure 25. Circuit for power supply bypassing
+VCC CLF + CHF 4
R G B
TSH344
5
The following graph in Figure 26 shows the evolution of the PSRR against the frequency when the power supply decoupling is achieved carefuly or not. Figure 26. PSRR improvement
0 -10 -20 -30 -40 -50 -60 -70 -80 10k
Vcc=5V Load=150 PSRR=20 log (VCC/Vout) without capacitor
PSRR (dB)
CLF=100uF CHF=470nF
100k
1M
10M
100M
Frequency (Hz)
Rev. 2
9/14
Using the TSH344 to Drive RGB Video Components
TSH344
4
Using the TSH344 to Drive RGB Video Components
Figure 27. Shapes of video signals coming from DACs
DAC Outputs: RGB 100 IRE
Image Content Black Level
White Level
30 IRE
300mV 1Vp-p
0Volt
0 IRE
Figure 28. Implementation of the video driver on output video DACs
(1) DAC output
Content of the video signal
(2) Amplifier output
Amplifier output rail (3.7V min.)
(3) On the line
2.6V 1.4Vp-p
0.7Vp-p 300mV 0V
600mV 0V
0.7Vp-p
Amplifier output rail (70mV max.)
300mV 0V
+5V
Video DAC
R
0.7Vpp
Reconstruction Filtering
LPF
+6dB
75
75 Cable
0.7Vpp
TV
75
1.4Vpp
Video DAC
G
0.7Vpp
Reconstruction Filtering
LPF
+6dB
75
75 Cable
0.7Vpp
75
1.4Vpp
Video DAC
B
0.7Vpp
Reconstruction Filtering
LPF
+6dB
TSH344
75
75 Cable
0.7Vpp
75
1.4Vpp
-5V
10/14
Rev. 2
TSH344
Using the TSH344 to Drive RGB Video Components
Figure 28 shows a schematic diagram of the use of the TSH344 to drive video output from DACs.
The TSH344 is used to drive high definition video signals up to 30MHz on 75-ohm video lines. It is dedicated to driving RGB signals typically between 300mV and 1V, as seen in (1). With a very low output rail (VOL) guaranteed in test of production at 60mV maximum, it is possible to drive the signal in single supply without any saturation of the driver against the lower rail. Assuming that we lose half of the signal by output impedance-matching in order to properly drive the video line, the shifted signal is multiplied by a gain of 2 or +6dB (3).
4.1
Delay between channels
Figure 29. Measurement of the delay between each channel
5V
75 +6dB
75 Cable
V1 75
Vin +6dB 75
75
75 Cable
V2 75 75
+6dB
75 Cable
V3 75
Delay between each video component is an important aspect in high definition video systems. To drive porperly the three video components without any relative delay, the dice of the TSH344 is layouted out with a very symetrical geometry. The effect is direct on the synchronization of each channel, as shown in Figure 30. No delay appears between each channel when the same Vin signal is applied on the three inputs. Note that the delay from the inputs the outputs equals 4ns.
Rev. 2
11/14
Using the TSH344 to Drive RGB Video Components Figure 30. Relative delay between each channel
3 Output responses
TSH344
Vcc=5V Load=150
Input
-4ns -2ns
0s
2ns
4ns
6ns
8ns 10ns 12ns 14ns 16ns 18ns 20ns
Time
12/14
Rev. 2
TSH344
Package Mechanical Data
5
Package Mechanical Data
SO-8 MECHANICAL DATA
DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8 (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157
0016023/C
Rev. 2
13/14
Revision History
TSH344
6
Table 4.
Date
Revision History
Document revision history
Revision Description of Changes
Dec. 2005 Jan. 2006
1 2
First release of datasheet. Capa-load option paragraph deleted in page 11.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
14/14
Rev. 2


▲Up To Search▲   

 
Price & Availability of TSH344IDT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X